A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds

PB Stranges, B Kuhlman - Protein Science, 2013 - Wiley Online Library
Protein Science, 2013Wiley Online Library
The accurate design of new protein–protein interactions is a longstanding goal of
computational protein design. However, most computationally designed interfaces fail to
form experimentally. This investigation compares five previously described successful de
novo interface designs with 158 failures. Both sets of proteins were designed with the
molecular modeling program Rosetta. Designs were considered a success if a high‐
resolution crystal structure of the complex closely matched the design model and the …
Abstract
The accurate design of new protein–protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high‐resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide‐protein interactions, one‐sided designs (i.e., where only one of the proteins was mutated) and two‐sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface‐spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果

安装“学术搜索”按钮,即可在浏览网页的同时查找论文。

Google学术搜索按钮
https://www.example.edu/paper.pdf
[PDF]引用

Bibliography

  1. Einstein, A., B. Podolsky, and N. Rosen, 1935, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev. 47, 777-780.